SES'S L. S. RAHEJA COLLEGE OF ARTS AND COMMERCE (AUTONOMOUS)

Syllabus of Numerical Methods and Discrete Structures under NEP 2020 vertical (OE) with effect from 2024-2025

Programme: Bachelor of Science in Information Technology
Department of Mathematics, Statistics and Computer
HoD/Sr. Person of the Department: Dr. Seema Ukidve
Date of approval by the BoS:24/04/2024
Approved by the Academic Council: 29/04/2024
Approved by the Governing Body: 06/05/2024

Programme: B.Sc.(IT)			Semester :	Semester : II		
Course : Numerical Methods and Discrete Structures in ITAcademic Year: 2024-2025Batch: 2024-2027				Code: UG	Code: UGBSCITIIOE124	
Teachi	Teaching Scheme Evaluation S			on Scheme	cheme	
Lectures	Practical	Tutorials	Credits	Internal Continuous Assessment (ICA) (weightage)	Term End Examinations (TEE) (weightage)	
30	Nil	Nil	2	20	30	

Learning Objectives:	Course will enhance the problem-solving skills of students using extremely powerful numerical methods.		
Learning Outcomes :	 Understand numerical techniques to find the roots of non- linear equations and solution of system oflinear equations. Understand the difference operators and the use of interpolation. Understand numerical differentiation and integration and numerical solutions of ordinary and partial differential equations. 		
Pedagogy:	1. Interactive Lectures2. Flipped Classroom3. Case Studies and Real-World Applications4. Collaborative Learning5. Research Component		

Detailed Syllabus: (per session plan)

Session Outline for "Numerical Methods and Discrete Structures in IT" Each lecture session would be of one hour duration (30 Sessions).

Module	Module Content	Module Wise Pedagogy Used	Module Wise Duration
I	 Linear Programming: Linear optimization problem, Formulation and Graphical solution, Basic solution and Feasible solution. Numerical Analysis: Numerical Error and Stability: Types of errors, stability analysis in numerical algorithms. Solutions of Equations: Bisection method, Newton- Raphson method, Secant method. Interpolation and Approximation: Polynomial interpolation, spline interpolation, least squares approximation. Numerical Differentiation and Integration: Approximations of derivatives, numerical integration using trapezoidal and Simpson's rules. 		15
II	Binary Trees Introduction, Binary Trees, Complete and Extended Binary Trees, Representing Binary Trees in Memory, Traversing		15

Binary Trees, Binary Search Trees, Priority Queues, Heaps,	
Path Lengths, Huffman's Algorithm, General (Ordered	
Rooted) Trees Revisited	
Ordered Sets and Lattices	
Introduction, Ordered Sets, Hasse Diagrams of Partially	
Ordered Sets, Consistent Enumeration, Supremum and	
Infimum, Isomorphic (Similar) Ordered Sets, Well- Ordered	
Sets, Lattices 346	
nded Lattices, Distributive Lattices, Complements,	
Complemented Lattices	

REFERENCE BOOKS

Title	Author/s	Publisher	Edition	Year
Introductory Methods of Numerical Methods	S. S. Sastry	PHI	5 th	2012
Numerical Methods for Engineers	Steven C. Chapra, Raymond P. Canale	Tata Mc Graw Hill	6 th	2010
Numerical Analysis	Richard L. Burden, J. Douglas Faires	CengageLearning	9 th	2011
Numerical Methods	T Veerarajan T Ramachandran	Tata Mc Graw Hill	7 th	2011
Advanced Applied Mathematics	M. P. Chaudhary	Piyush Book Publication Pvt. Ltd. New Delhi, India, 2003 .ISBN:81- 86548-64-5		

QUESTION PAPER PATTERN

Details of Internal Continuous Assessment (ICA)

Internal Test Marks: 10 1 internal test of 10 marks will be conducted.

Term End Examination Question Paper Pattern Total Marks: 30

Q1 Answer any **three** out of the following Four questions (based on Module I) 5*3=15

Q2 Answer any **three** out of the following Four questions (Based on Module II) 5*3=15